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BACKGROUND/OBJECTIVES: Nutrition and obesity researchers often dichotomize or discretize continuous independent variables
to conduct an analysis of variance to examine group differences. We describe consequences associated with dichotomizing and
discretizing continuous variables using two cross-sectional studies related to nutrition.
SUBJECTS/METHODS: Study 1 investigated the effects of health literacy and nutrition knowledge on nutrition label accuracy
(n= 612). Study 2 investigated the effects of cognitive restraint and BMI on fruit and vegetable (F/V) intake (n= 586). We compare
analytic approaches where continuous independent variables were either discretized/dichotomized or analyzed as continuous
variables.
RESULTS: In Study 1, dichotomization of health literacy and nutrition knowledge for 2 × 2 ANOVA revealed health literacy had an
effect on nutrition label accuracy. Nutrition knowledge has an effect on nutrition label accuracy, but the health literacy by nutrition
knowledge interaction was not significant. When analyzed using regression, the nutrition knowledge effect was significant. The
simple effect of health literacy was also significant when health literacy equals zero. Finally, the quadratic effect of health literacy
was negative and significant. In Study 2, dichotomization and discretization of cognitive restraint and BMI were used for three
ANOVAs, which discretized BMI in three ways. For all ANOVAs, the BMI main effect for predicting fruit and vegetable intake was
significant, the interaction between BMI and cognitive restraint was non-significant, and cognitive restraint was only significant
when both variables were dichotomized. When analyzed using regression, the continuous mean-centered variables, and their
interaction each significantly predicted F/V intake.
CONCLUSIONS: Dichotomizing continuous independent variables resulted in distortions of effect sizes across studies, an inability
to assess the quadratic effect of health literacy, and an inability to detect the moderating effect of BMI. We discourage researchers
from dichotomizing and discretizing continuous independent variables and instead use multiple regression to examine
relationships between continuous independent and dependent variables.
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INTRODUCTION
Studies in nutrition and obesity science routinely involve
continuous variables, such as waist circumference, body mass
index (BMI), and various eating indices. Often, these variables are
dichotomized to create groups of individuals who are “high” or
“low” on the continuous measure. For example, researchers will
employ a median split to create two groups based on a
continuous variable. A recent Google Scholar search for publica-
tions since 2020 for the phrase “median split” and “obesity” found
1350 results. Further, the term “median split” occurred at least 15
times in the Proceedings of the National Academy of Sciences
between the years 2020 and 2023.
While dichotomization often occurs at the median, it can occur

at any point in a continuous distribution. Moreover, continuous

variables are often discretized into more than two categories. The
Centers for Disease Control (CDC) [1] classifies BMI as underweight
<18.5, healthy weight between 18.5 and 24.9, and overweight
25.0– 29.9. Obesity is BMI > 30, with further breakdown into Class
1 (30 to <35), Class 2 (35 to <40), and Class 3 (≥40). The following
discussion is important for researchers who dichotomize or
discretize continuous variables.
We briefly review the problems with dichotomizing and

discretizing continuous variables and propose more effective
methods using common, and often free, software. Two examples
follow that demonstrate the negative consequences of dichot-
omization and discretization. We recommend solutions that do
not require more than a basic understanding of multiple linear
regression and moderated regression procedures. Most of the
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alternatives have been integrated into common statistical
packages (e.g., SAS, SPSS, R, and Python). Further, online tools to
probe interactions for moderated regression are readily available.

Issues associated with dichotomizing and discretizing
continuous independent variables
This issue has been a concern in other scientific fields. Leading
journals [2–7] have recommended against the use of dichotomiz-
ing continuous variables. An exchange in the Journal of Consumer
Psychology [8–12] on the use of the median split highlights many
of these issues. However, we will discuss the most significant
concerns as they pertain to the obesity and nutrition fields.
The negative consequences of dichotomizing and discretizing

continuous independent variables are well known. Cohen [13]
demonstrated that effect sizes may be attenuated when
continuous normally distributed independent variables are
dichotomized at the mean. The reduction of the correlation also
worsens if dichotomization takes place further from the mean [13].
One reason why effect sizes will be attenuated is due to the loss of
information which results when scores that differ on the
continuous variable are treated the same because they fall above
(or below) an arbitrary value (e.g., when they fall within a specific
range or category). This loss of information adds measurement
error to the assessment of the predictor variable. MacCallum and
colleagues [14] also showed that dichotomizing continuous
independent variables will reduce the reliability of the measures
used in laboratory and field experiments. Reduced reliability
results in the attenuation of the relationship between two
variables, i.e., a decreased likelihood that a difference between
groups will be detected.
MacCallum et al. [14] also conducted simulation studies (see

Table 1 in their paper) to determine the proportion of times when
dichotomizing normally distributed random variables may also
result in spurious increases in the correlation between the
dichotomized variable and the outcome variable due to sampling
error. These authors found that spurious increases were more
likely to occur when the correlation between the two variables
was low (correlations equal to 0.10) and when sample size was
lower (sample sizes of 50). Even in samples as large as 300 and
with a correlation of 0.10, the MacCallum, et al. [14] simulation
studies demonstrated that these spurious increases in the
correlation due to dichotomization occurred over 28% of the time.
There are still other reasons why researchers should not

dichotomize or discretize continuous independent variables. As
statistical power is defined as the probability of detecting an effect
of a certain size if the effect is there, procedures that distort effect
sizes will also distort the power of those statistical tests. Moreover,
distorted effect sizes further impact future meta-analyses, thus
impacting the generalizability of the effect in question.
In addition, Maxwell and Delaney [15] demonstrated that one

may also obtain spurious statistical results when multiple variables
are dichotomized in the same analyses. In other words, one may
find a main effect in ANOVA that is statistically significant as a
result of dichotomization at the median, but the regression
analysis may not reveal this effect. These spurious main effects or
interactions are more likely to arise as the correlations among the
independent variables increase. In addition, the practice of
dichotomizing and discretizing continuous variables may lead to
biased parameter estimates. These results may not be replicated
and may lead researchers to make incorrect conclusions.
Furthermore, one cannot examine nonlinear relationships
between continuous independent variables and outcome vari-
ables if continuous variables are dichotomized.

ANALYTIC APPROACH TO DEMONSTRATIONS
We compare analytic approaches from two studies where
continuous independent variables were either discretized/

dichotomized or analyzed as continuous variables. Since the
correlations among independent variables may inflate Type I error
rates and lead to the detection of spurious results [15], we report
the correlations among the predictors. We also report the
correlations between the predictors and criterion, as research
shows dichotomization may both attenuate and inflate effect sizes
[13, 14]. In addition, we test models for nonlinearity, as prior
research has shown that un-modeled nonlinear relationships may
create a spurious interaction in linear regression analysis [16, 17].
Both studies were approved by the University of Texas at El Paso
Institutional Review Board, and participants consented prior to
participation.
In Study 1, an un-modeled quadratic effect would have resulted

in a two-way interaction with multiple linear regression. We
present the model with the quadratic effect below and compare it
to analyses associated with dichotomizing continuous indepen-
dent variables. Since the predictors could take on the value of zero
and zero represented a meaningful score of not answering any
item correct on the measures, the predictors were not centered. In
Study 2, there was no quadratic effect for either predictor.
Therefore, we compare a linear regression model with a two-way
interaction to a variety of ANOVA models. In the regression
analyses in Study 2, we mean-centered the predictors as neither
predictor could take on the value of zero. Data from Study 1 is
available from the first author, while data from Study 2 is available
from the last author.

Study 1: Materials and methods
Our first example uses three variables to examine the relationship
between nutrition knowledge and health literacy. The relation-
ships among accurately reading food labels, nutrition knowledge,
and health literacy (n= 612) as part of a larger model were
explored. Prior to the start of the study, informed consent was
obtained from all participants. Participants were female (71.4%)
with an average age of 20.26 years (SD= 3.89) and Latinx (85.3%
of the sample). Data were collected online in Qualtrics during
2017–2018 academic school year. The study had sufficient power:
Assuming that health literacy, nutrition knowledge and a
quadratic effect of health literacy explained 12.5% of variability
in food label accuracy scores and the quadratic effect of health
literacy uniquely explained 2.5% of unique variability, a sample of
385 participants would be needed to detect the quadratic effect
with a Type I error rate of 0.05 and power = 0.80 [18] This study
was not replicated.
To measure health literacy, we used a modified version of the

Health Literacy Skills Instrument [19, 20] with items being scored
as correct or incorrect. The composite score represents the total
correct answers. Scores range from 0 to 9, with higher scores
indicating greater health literacy. Participants’ average score was
5.61 (SD= 1.54) with reliability (indexed by KR-20) of 0.68, 95% CI
(0.64, 0.72). In order to create two categories, anyone scoring 6 or
lower was considered “low” on health literacy (68.8% of the
sample) and anyone scoring 7, 8, or 9 was considered “high.”
While it was not possible to create approximately equal-sized
groups with discrete outcomes that assume the values between 0
and 9, the arbitrary choice of where to dichotomize can be seen as
an additional impediment to valid inference when dichotomizing
independent variables.
For our second variable, we measured nutrition knowledge

using a modified version of a measure developed by Parmenter
and Wardle [21]. The measure consisted of 20 items that pertain to
the relationship between diet and health problems. The compo-
site score represents the total number of correct answers.
Participant scores ranged from 0 to 18 with an average score of
10.73 (SD= 3.26) and a reliability estimate (indexed by KR-20) of
0.65, 95% CI (0.61, 0.69). To create two artificial categories, scores
were dichotomized at 12, where participants who scored 11 or
lower were “low” on nutrition knowledge (56.4% of the sample).
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To measure nutrition label accuracy, a modified version of the
Nutrition Label Survey [22] based on our earlier work [19] was
used. Participant scores ranged from 0 to 16 with an average score
of 10.86 (SD= 3.29). The reliability of the scores for this measure
(as indexed by KR-20) equaled 0.77, 95% CI (0.74, 0.79).

Study 1: Results
Univariate relationship between predictors and label accuracy. The
relationship between health literacy and label accuracy as a
continuous variable is r(610)= 0.30, P < 0.001. Health literacy
explains 8.8% of the variability in label accuracy scores. The
relationship between dichotomized health literacy and label
accuracy is attenuated, as the correlation was r(610)= 0.14,
P < 0.001, explaining 2.0% of the variance. This example demon-
strates a dramatic 77.2% reduction in effect size when using
dichotomized variables (8.8% vs. 2.0%).
In addition, the correlation between nutrition knowledge and

label accuracy was r(610)= 0.29, P < 0.001 and explains 8.3% of
the variance in label accuracy scores. The correlation between the
dichotomized nutrition knowledge and label accuracy was
r(610)= 0.20, P < 0.001, and the proportion of variance explained
was 4.1%. Finally, the two predictors were moderately correlated,
r(610)= 0.30, P < 0.001.

Results of the analysis of variance with dichotomized independent
variables. In this demonstration, we investigated the effects of
dichotomized continuous variables on label accuracy scores. The
main effect for nutrition knowledge was statistically significant,
F(1, 608)= 14.27, P < 0.001, squared partial correlation = 0.023,
Cohen’s d= 0.43. The nutrition label accuracy score (mean ± SE)
for the participants with “low” vs. “high” nutrition knowledge was
10.59 ± 0.20 vs. 11.66 ± 0.20.
The main effect for health literacy was statistically significant,

F(1, 608)= 8.44, P= 0.004, squared partial correlation = 0.014,
Cohen’s d= 0.31. The nutrition label accuracy score (mean ± SE)
for the participants with “low” vs. “high” health literacy was
10.72 ± 0.16 vs. 11.53 ± 0.23. Finally, the interaction was not
statistically significant, F(1, 608)= 3.512, P= 0.061, squared partial
correlation= 0.006. The R2 for this analysis equaled 0.06, indicat-
ing that the dichotomized independent variables and their
interaction explain 6% of the label accuracy variability.

Results of the multiple regression analysis. We also analyzed the
data using multiple regression. Initially, we regressed label
accuracy on nutrition knowledge, health literacy, and their
interaction. As prior research [16, 17] shows that un-modeled
nonlinear effects may result in spurious interactions, we also
regressed label accuracy on nutrition knowledge, health literacy,
and health literacy squared (to estimate a quadratic effect). This
model was a better model in terms of the proportion of variance
explained. Another model containing the quadratic effect for
health literacy and a two-way interaction between health literacy
and nutrition knowledge was also examined, but the two-way
interaction was not significant. We now discuss the regression
model with the quadratic effect.
In the analysis with the quadratic effect, the R2 equaled 0.17,

almost three times the proportion of variance explained in the
prior ANOVA. Moreover, the partial regression coefficient for
nutrition knowledge was significant: for every 1-unit increase in
nutrition knowledge, the predicted label accuracy score increased
0.17 points (P < 0.001) holding health literacy constant. The
squared partial correlation coefficient associated with this variable
equaled 0.030, which indicates that nutrition knowledge uniquely
accounts for 3.0% of the unexplained variability in nutrition label
accuracy scores that is not accounted for by the other predictors
in the model.
The simple effect for health literacy when health literacy equals

zero is 2.52 (P < 0.001) showing that when health literacy is low,

small differences in health literacy are associated with large
differences in predicted label accuracy scores. The squared partial
correlation coefficient associated with this simple effect equaled
0.07, indicating that this variable uniquely accounts for 7.0% of the
unexplained variability in nutrition label accuracy scores that is not
accounted for by the other predictors in the model.
One obvious shortcoming of dichotomizing health literacy for

an ANOVA is the inability to examine nonlinear relationships. Put
another way, the power to detect this quadratic effect in an
ANOVA equals zero. In this model, the quadratic effect was
statistically significant. At the point where Health Literacy = 0 (its
minimum), and holding constant Nutrition Knowledge, a 1-unit
increase in Health Literacy translates to a 2.52-point increase in
predicted Label Accuracy when health literacy equals zero, and
−0.20 is half the amount by which this effect changes for every
1-unit increase in Health Literacy thereafter. So, the initially
significant positive effect of Health Literacy weakens as Health
Literacy increases (P < 0.001). The squared partial correlation
coefficient associated with this quadratic effect equaled 0.049,
indicating this variable uniquely accounts for 4.9% of the
unexplained variability in nutrition label accuracy scores that is
not accounted for by other predictors are in the model.

Probing the quadratic effect. For our model,

ŷ ¼ 1:53þ 0:17Nutrition Knowledgeþ 2:52Health Literacy

�0:20Health Literacy2

Re-expressing this model,

ŷ ¼ 1:53þ 0:17Nutrition Knowledgeþ 2:52Health Literacy

�0:20 ðHealth Literacy � Health LiteracyÞ

The quadratic effect above indicates the quadratic effect is an
interaction, i.e., the regression of accuracy in reading nutrition
labels on health literacy depends on where you stand on health
literacy. Rearranging terms, this model can be re-expressed as:

ŷ ¼ 1:53þ :17Nutrition Knowledge

þ 2:52� 0:20Health Literacyð ÞHealth Literacy

To aid in the interpretation of the parenthesized term, we used
the Johnson–Neyman [23] regions of significance approach to
determine what values of health literacy made the parenthesized
term statistically significant. As Spiller and colleagues [24] high-
light, the choice of what values equal zero among the predictor
variables must be kept in mind when examining the parenthe-
sized term above.
There are several ways to probe an interaction, including the

use of 3D graphs [25], spotlighting or pick-a-point [16], flood-
lighting [26], and the Johnson–Neyman [23] regions of signifi-
cance approach. The use of 3D graphs allows for a three-
dimensional examination of the relationship between the
predictor variables and the dependent variable. Spotlighting or
pick-a-point assesses the statistical significance of the parenthe-
sized term at a particular value of the moderator variable.
Floodlighting examines all possible values that the moderator
variable can take on in the parenthesized term for the simple
slope, while the Johnson–Neyman regions of significance
approach provides a range of the values for the moderator where
the parenthesized term for the simple slope is statistically
significant. We chose to use the Johnson–Neyman approach, as
the resulting graph is easy to interpret and provides the regions of
significance.
Miller et al. [27] provide online tools that involve the use of the

Johnson–Neyman approach to examine the statistical significance
of the parenthesized term when the linear model contains a
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quadratic effect. Using these tools, the parenthesized term above
is not statistically significant when health literacy ranges between
5.8883 to 7.2203. In other words, when health literacy is equal to 6
or 7, the local linear effect of health literacy on accuracy in reading
nutrition labels is not statistically significant. Between the values of
0 and 5, the local linear effect of health literacy on accuracy in
reading food labels is positive. For the individuals who score either
8 or 9, the local linear effect of health literacy on accuracy in
reading food label scores is negative. Figure 1 depicts this simple
slope.

Study 2: Materials/subjects and methods
Our second example examines the relationships among cognitive
restraint, BMI, and fruit & vegetable (F/V) intake (n= 586).
Participants were female (66.2%), Latinx (69.3%), and had annual
income less than 50 K (53.6%). The average age was 35.5
(SD= 14). Data were collected from health professionals, nutrition
students, and community members from March 2018 to June
2019. Prior to the start of the study, informed consent was
obtained from all participants. The study had sufficient power:
Assuming that the interaction between cognitive restraint and BMI
explained 1.5% of unique variability and that BMI, cognitive
restraint, and their interaction explained 12.5% of the variability in
F/V intake, a sample of 462 participants would be needed to
detect this interaction with a Type I error rate of 0.05 and power =
0.80 [18]. This study was not replicated.
To measure cognitive restraint, we used a modified version of

this domain from the Three Factor Eating Questionnaire [28, 29]
with items being scored on a 1–4 Likert scale. Mean composite
scores range from 1 to 4, with increased scores indicating greater
cognitive restraint. Participants’ average score was 2.61 (SD= 0.56)
with reliability (indexed by coefficient alpha) of 0.67. For the
purpose of this example, anyone scoring 2.60 or lower was
considered “low” on cognitive restraint and anyone scoring above
2.60 as considered “high” on cognitive restraint. “Low” scoring
individuals made up 45.9% of the sample.
For our second variable, we calculated the participants’ BMI.

Participant height (Seca 213 stadiometer, Hamburg, Germany) and
weight were measured (InBody 270 and InBody 570 Body
Composition Analyzers, Seoul, South Korea), and BMI was
calculated. Heights were rounded to the nearest half-centimeter.
Participant BMIs ranged from 17.0 to 60.7 with an average score of

27.99 (SD= 6.05). Several artificial groupings were created:
dichotomized at median, discretized per CDC guidelines [1], and
dichotomized as having obesity or not. To create two artificial
categories, scores were dichotomized at 27.1, where participants
who scored 27.1 or lower were “low” BMI and were assigned a
score of 0. “Low” scoring participants made up 50.2% of the
sample. Individuals whose BMI was greater than 27.1 were
considered “high” and were assigned a score of 1.
In a separate analysis, BMI was discretized at the following

points, according to CDC guidelines [1]: underweight, BMI < 18.5
(1.2% of the sample); healthy weight, BMI 18.5–24.9 (32.4% of the
sample); overweight, BMI 25.0–29.9 (36% of the sample); Class 1
Obesity, BMI 30–34.9 (18.4% of the sample); Class 2 Obesity, BMI
35–39.9 (7% of the sample); and Class 3 Obesity, BMI ≥ 40 (4.9% of
the sample). In a third ANOVA, BMI was discretized using modified
CDC guidelines where Class 1, Class 2, and Class 3 obesity were
merged into an “obesity” category, constituting 30.3% of the
sample.
For F/V intake, we measured skin carotenoid levels, a biomarker

for total F/V intake, using reflectance spectroscopy (VEGGIE
METER® by Longevity Link Incorporated, Salt Lake City, UT, USA)
[30, 31]. Participant scores ranged from 29 to 709 with an average
score of 275.67 (SD= 110.149).

Study 2: Results
Univariate relationship between predictors and F/V intake. When
analyzed as a continuous variable, the relationship between BMI
and F/V intake is r(584)=−0.18, P < 0.001. BMI explains 3.1% of
the variability in F/V intake scores. The relationship between a
dichotomized BMI and F/V intake increased, with a correlation of
r(584)=−0.21, P < 0.001, explaining 4.2% of the variance. As
mentioned earlier, one of the conditions under which dichotomiz-
ing continuous variables may increase the correlation with the
criterion occurs when the correlation is small, as is the case in this
example. These correlations do not statistically differ from one
another, Z= 1.07, P= 0.29. [32, 33].
The correlation of cognitive restraint as a continuous variable

with F/V intake was r(584)= 0.13, P= 0.001 while the correlation
of dichotomized cognitive restraint with F/V intake was
r(584)= 0.14, P= 0.001. The correlations with these two
approaches did not statistically differ from one another,
Z=−0.17, P= 0.86 [32, 33]. Finally, the correlation between
continuously measured cognitive restraint and continuously
measured BMI was r(584)= 0.04, P= 0.28.

Results of the analysis of variance with discretized and dichotomized
independent variables. To investigate the effects of dichotomized
and discretized continuous variables on F/V intake scores we
conducted the following ANOVAs on F/V intake: 2 (low vs high
cognitive restraint) × 2 (low vs high BMI), a 2 (low vs high cognitive
restraint) × 4 (underweight–healthy weight–overweight-obesity),
and a 2 (low vs high cognitive restraint) × 6 (underweight–healthy
weight–overweight-Class 1 Obesity-Class 2 Obesity-Class 3 Obe-
sity).
For the 2 × 2 ANOVA on F/V intake scores, the main effect of

BMI was statistically significant, F(1, 582)= 24.58, P < 0.001,
squared partial correlation = 0.041. The F/V score (mean ± SE)
for the participants with low vs. high BMI was 296.26 ± 6.24 vs.
252.42 ± 6.26. The main effect for cognitive restraint was
statistically significant, F(1, 582)= 12.07, P < 0.001, squared partial
correlation = 0.02. The scores (mean ± SE) for participants with
low vs. high cognitive restraint was 258.98 ± 6.50 vs. 289.70 ± 5.99.
Finally, the interaction was not statistically significant, F(1,
582)= 3.34, P= 0.062, squared partial correlation = 0.006. The
R2 for this analysis equaled 0.067, indicating that the dichotomized
independent variables and their interaction explain 6.7% of the
variability in F/V intake. For these analyses, one would conclude
that individuals with low BMI (relative to high BMI), and that those

Fig. 1 Johnson-Neyman Regions of Significance Plot for Study1.
Probing the quadratic effect of health literacy.
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individuals with high cognitive restraint (relative to low cognitive
restraint), consume more F/Vs.
For the 2 × 4 ANOVA (respectively, low vs. high cognitive

restraint; underweight–healthy weight–overweight–obesity) on F/
V intake scores, the main effect for BMI was statistically significant,
F(3, 578)= 6.94, P < 0.001, squared partial correlation = 0.012. The
F/V score (mean ± SE) for participants in the categories of
underweight, healthy weight, overweight, and obesity were
246.50 ± 44.83, 302.78 ± 7.77, 267.4 ± 7.52, 254.27 ± 8.05, respec-
tively. Bonferroni contrasts revealed that individuals with healthy
weight ate more F/Vs than participants with overweight and
obesity. The main effect for cognitive restraint was not statistically
significant, F(1, 578)= 3.23, P= 0.073, squared partial correlation
= 0.006. Finally, the interaction was also not statistically
significant, F(3, 578)= 2.07, P= 0.103, squared partial correlation
= 0.004. The R2 for this analysis equaled 0.065, indicating that the
discretized predictors and their interaction explain 6.5% of F/V
intake variability.
For the 2 (low vs. high cognitive restraint) × 6

(underweight–healthy weight–overweight–obesity 1–obesity
2–obesity 3) ANOVA on F/V intake scores, the main effect for
BMI was statistically significant, F(5, 574)= 4.85, P < 0.001, squared
partial correlation = 0.008. The F/V score (mean ± SE) for
participants in the categories of underweight, healthy weight,
overweight, obesity 1, obesity 2, and obesity 3 were 246.50 ± 44.81,
302.78 ± 7.77, 267.43 ± 7.52, 263.94 ± 10.42, 239.50 ± 16.77, and
232.98 ± 19.90, respectively. Bonferroni contrasts revealed that
healthy-weight individuals ate more F/Vs than those with over-
weight and all participants with obesity. The main effect for
cognitive restraint was not statistically significant, F(1, 574)= 1.42,
P= 0.23, squared partial correlation = 0.002. Finally, the interaction
was also not statistically significant, F(5, 574)= 1.72, P= 0.128,
squared partial correlation = 0.003. The R2 for this analysis equaled
0.072, indicating that the discretized predictors and their interac-
tion explain 7.2% of the F/V intake variability.

Results of the multiple regression analysis. We also analyzed the
data using multiple regression, where BMI and cognitive restraint
and their interaction were included in the model. In general, the
regression model in our example can be expressed as:

ŷ ¼ β0 þ β1X þ β2Z þ β3XZ

Rearranging terms and declaring X (cognitive restraint) as the
focal predictor and Z (e.g., BMI) as the moderator variable yields:

ŷ ¼ ðβ0 þ β2ZÞ þ ðβ1 þ β3ZÞX

The first parenthesized term is known as the simple intercept; we
see that the simple intercept is dependent on the value of Z, the
moderator, and its associated conditional partial regression
coefficient, β2. The second parenthesized term is known as the
simple slope, and it is also dependent on the value of Z.
Researchers often want to provide “meaning” to β1, so that one
can say that for every 1 unit change in X, β1 will represent how
much the predicted outcome variable will change. That claim can
be made only when Z= 0. In the current example, BMI and
cognitive restraint can never take on the value of zero. As a result,
β1 represents an effect that has no meaning. The above equation
can also be rearranged making Z the focal predictor, so that the
meaningfulness of β2 will depend on whether X (e.g., cognitive
restraint) can assume the value of 0.
McClelland et al. [34] provide an easy-to-understand synopsis of

a variety of ways to provide meaning to these conditional partial
regression coefficients. Some of these methods involve mean-
centering the predictor variables [35] and performing orthogonal
transformations of the predictor variables [36, 37]. As McClelland
et al. [34] point out, these transformations of the predictor will not

alter the estimate of β3 or its associated standard error. In addition,
the semi-partial correlation and partial correlation involving the
interaction term and the outcome will not be changed due to
either mean centering or the use of an orthogonal transformation.
These transformations will also have no effect on model fit [38].
The primary benefit of transforming predictor variables is to
provide “meaning” to β1 and β2.
It is also clear that interpreting the simple slope depends on the

numeric values of β1 and/or β2 [24], which depends on how
predictor variables are transformed. In this demonstration, we
decided to mean center BMI and cognitive restraint. In this
analysis, the R2 equaled 0.059, which is less than estimates of R2

from the ANOVA models. The conditional effect for a centered BMI
was statistically significant, Β=−3.75 (SE= 0.76), t=−4.95,
P < 0.001. The squared partial correlation coefficient associated
with this conditional effect equaled 0.040, indicating that this
variable uniquely accounts for 4% of the unexplained variability in
F/V intake scores that is not accounted for by the other predictors.
The conditional effect for mean cognitive restraint was

significant: Β = 24.22 (SE= 8.01), t= 3.02, P= 0.003. The squared
partial correlation coefficient associated with this variable equaled
0.015, which indicates that cognitive restraint uniquely accounts
for 1.5% of the unexplained variability in F/V intake that is not
accounted for by the other predictors. The conditional effect of
cognitive restraint is qualified by an interaction with BMI:
Β=−2.84 (SE= 1.34), t=−2.12, P= 0.034. These findings contra-
dict what was found with the various ANOVA models where
cognitive restraint was dichotomized and BMI was either
dichotomized or discretized. The squared partial correlation
coefficient associated with this conditional effect equaled 0.008,
indicating this variable uniquely accounts for 0.8% of the
unexplained variability in F/V intake scores that is not accounted
for by the other predictors.

Probing the interaction. As discussed earlier, once an interaction
is found in regression, the interaction needs to be understood. In
the equations below, ŷ will denote the predicted F/V intake score.
For our model,

ŷ ¼ 276:10þ 24:22ðMean� centered Cognitive RestraintÞ
þ � 3:75ðMean� centered BMIÞ � 2:84

ð Mean� centered Cognitive Restraintð Þ � Mean� centered BMIð ÞÞ

This model is a moderated multiple regression equation, where
one independent variable is the focal predictor and the other
independent variable is the moderator. For this example, cognitive
restraint will be the focal predictor of F/V intake and BMI
moderates the relationship between cognitive restraint and F/V
intake. Rearranging terms, this model can be re-expressed as:

ŷ ¼ 276:10þ�3:75ðmean� centered BMIÞð Þ
þ 24:22þ�2:84 mean� centered BMIð Þð Þ
ðmean� centered Cognitive RestraintÞ

To aid in the interpretation of this model, many researchers
would dichotomize the moderator and plot the regression of the
outcome variable on the focal predictor separately for individuals
who are “low” and “high” on the moderator. Other researchers
might pick three arbitrary points of the moderator variable (e.g.,
the mean and 1 standard deviation above and below the mean of
the moderator variable) and plot the regression of the dependent
variable on the focal predictor at these three points. While such
procedures are commonly used, they do not determine the
numeric values of the moderator variable that make the simple
slope statistically significant. Moreover, such an approach limits
generalizability as the values of the mean and the standard
deviation are sample-dependent [24].
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The Johnson–Neyman technique [23] allows for such an
assessment by creating 95% confidence intervals for a simple
slope for all hypothetical values of the moderator. Confidence
limits that exclude zero indicate the simple slope is statistically
significant at that value of the moderator. In Fig. 2, the vertical axis
consists of values of the simple slope, while the horizontal axis are
the numeric values of the moderator variable, BMI. Looking at Fig.
2, we see the values of BMI slightly above 2.24 units above the
mean have confidence intervals that contain 0. Using PROCESS
[39], the simple slope is not statistically significant at mean-
centered BMI values above 2.24 units above the mean. Mean BMI
in this sample equaled 27.99. In practical terms, the conditional
effect of increased mean-centered cognitive restraint on F/V
intake is detectable for participants classified as underweight,
healthy weight, overweight, and for some who would be classified
as having obesity (BMI < 30.23, which is 27.99+ 2.24). For
participants who have BMIs >30.23, there is no significant
association between F/V intake and cognitive restraint.
As interactions are symmetric, we can also treat cognitive

restraint as the moderator variable. Rearranging the above
expression,

ŷ ¼ 276:10þ 24:22ðmean� centered Cognitive Restraintð Þ
þ �3:75þ�2:84 mean� centered Cognitive Restraintð Þð Þ
ðmean� centered BMIÞ

Using the Johnson–Neyman [23] regions of significance
approach, the simple slope above is statistically significant when
cognitive restraint scores are greater than or equal to 0.64 units
below the mean on cognitive restraint.

DISCUSSION
Researchers often create dichotomized/discretized groups so that
they can conduct an ANOVA or an independent samples t-test to
assess group differences or help them interpret an interaction.
Researchers will also dichotomize a continuous independent
variable and use those groupings to interpret an interaction in a
moderated multiple regression. As both of those options also
come with problems mentioned earlier, we recommend that

researchers keep independent variables continuous and use
multiple linear regression.
One may argue that there are situations to dichotomize or

discretize continuous independent variables. For example, if
there is reason to suspect that there are underlying groupings
for continuous independent variables, researchers should use
alternative strategies like latent class analysis or taxometric
techniques. These techniques can be used to examine under-
lying groupings rather than impose an arbitrary, sample-specific
cut point like the median. [14] Spiller and colleagues [24] also
mention that simple slopes that result from a multiple linear
regression of continuous variables may be probed at estab-
lished cut points. For example, the United States Armed Forces
[40] uses established cut points to make enlistment decisions
and decisions to provide recruiting bonuses to individuals who
score very well on the Armed Services Vocational Aptitude
Battery. It is worth emphasizing that these cut scores are
established and not sample-specific.
Online tools and software macros exist to assist in interpreting

interactions without the need to dichotomize one or more of the
variables [39, 41]. For example, http://www.quantpsy.org has tools
that allow for the plotting of two- and three-way interactions in
multiple regression. Andrew Hayes developed the PROCESS [39]
macro for SAS and SPSS, and the “processr” package for R which
allow for an examination of interactions. These tools use the
Johnson–Neyman [23] technique to solve for numeric values of
the moderating variable for which the simple slope is statistically
significant. These techniques allow researchers to better interpret
their interactions compared to dichotomizing continuous inde-
pendent variables.
We demonstrated across two different studies a number of

adverse effects of dichotomizing and discretizing continuous
independent variables. In the first example, we were unable to
model a nonlinear relationship. In addition, correlations were
attenuated, and model fit was reduced by almost two-thirds when
continuous predictor variables were dichotomized. In a second
example involving the uncorrelated predictors of cognitive
restraint and BMI, we witnessed the negative effects of
dichotomizing these variables in the inability to detect the
interaction in the 2 × 2 ANOVA. In fact, none of the reported
ANOVAs detected the interaction.
With the examples above, we demonstrated that multiple

regression is the preferred analytic procedure. No reason for
dichotomizing or discretizing independent variables can compete
with the adverse effects discussed in this report. In our examples,
we saw that dichotomizing and discretizing continuous indepen-
dent variables resulted in ANOVA models that did not detect a
quadratic effect or an interaction between the predictor variables.
The quadratic effect and the interaction was probed using the
Johnson–Neyman [27] regions of significance to accurately
describe the nature of the relationship.
Correctly analyzing data is not only an empirical issue but also

an ethical issue. Methodologists [42, 43] have written about how
researchers fail to use the most appropriate analytic tools when
communicating with their audiences. Panter and Sterba [43] write,
“It is well known that accessible statistical guidance given without
an ethical imperative…is painfully slow to infiltrate applied
practice (pg 2).” We believe this is the case with the practice of
dichotomizing and discretizing continuous independent variables.
We have provided two examples that are relevant to the field of
nutrition: predicting how accurately someone can read a nutrition
food label and predicting fruit and vegetable intake. We
recommend that researchers who publish in journals like Nutrition
and Diabetes refrain from losing information about BMI levels
when studying its relationship with health and nutrition knowl-
edge variables through procedures like dichotomization and
discretization.

Fig. 2 Johnson-Neyman Regions of Significance Plot for Study2.
Probing the two-way interaction with mean-centered BMI as the
moderator variable.
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