LISREL and Mplus code to accompany:

Three ways to estimate an aperture parameter

Method 1: Lambda shift method

LATENT GROWTH CURVE OF HANCOCK & CHOI DATA, EX. 2
DA NI=4 NO=198 MA=CM
CM
11.000
5.860 13.000
6.205 8.094 14.000
6.103 8.798 10.177 16.000
ME
3.3 3.7 4.0 4.2
MO NY=4 NE=2 LY=FU,FI BE=FU,FI TY=FI AL=FR PS=SY,FI TE=DI,FR AP=1
LE
INT SLP
FR PS 1 1 PS 2 2 !PS 2 1
VA 1 LY 1 1 LY 2 1 LY 3 1 LY 4 1
CO LY 1 2 = 4 - PA 1
CO LY 2 2 = 6 - PA 1
CO LY 3 2 = 7 - PA 1
CO LY 4 2 = 8 - PA 1
PD
OU IT=5000 AD=OFF ND=4

Method 2: Phantom variable approach

LATENT GROWTH CURVE OF HANCOCK & CHOI DATA, EX. 2
DA NI=4 NO=198 MA=CM
CM
11.000
5.860 13.000
6.205 8.094 14.000
6.103 8.798 10.177 16.000
ME
3.3 3.7 4.0 4.2
MO NY=4 NE=3 LY=FU,FI BE=FU,FI TY=FI AL=FI PS=SY,FI TE=DI,FR
LE
INT SLP PHANTOM
FR AL 1 AL 2
PA PS
1
0 1
Method 3: Structured latent curve approach

LATENT GROWTH CURVE OF HANCOCK & CHOI DATA, EX. 2
DA NI=4 NO=198 MA=CM
CM
11.000
5.860 13.000
6.205 8.094 14.000
6.103 8.798 10.177 16.000
ME
3.3 3.7 4.0 4.2
MO NY=4 NE=3 LY=FU,FI TY=FI AL=FR PS=SY,FI TE=DI,FR AP=1
LE
INT SLP APERTURE
PA PS
 1
 0 1
 0 0 0
MA PS
 .5
 0 .5
 0 0 0
PA LY
 0 0 0
 0 0 0
 0 0 0
 0 0 0
MA LY
 1 0 0
 1 0 0
A reparameterized Gompertz structured latent growth curve model with random coefficients

Example application to ECLS-K mathematics data (kindergarten through 8th grade). Random coefficients represent the upper asymptote, surge point, and surge slope (see Choi, Hancock, & Harring, 2009) for definitions of these terms.

TITLE: ECLS-K math, reparameterized Gompertz curve;
DATA: FILE = eclsk.dat;
VARIABLE: NAMES = id !gender 0=boy, 1=girl; uncomment gender for conditional model
m_fk m_sk m_f1 m_s1 m_s3 m_s5 m_s8;
USEVARIABLES ARE gender m_fk-m_s8;
MISSING = .;
ANALYSIS:
ALGORITHM = INTEGRATION;
INTEGRATION = MONTECARLO;
MODEL:

!Factor Loadings
g0 BY m_fk*(Lg01)
m_sk-m_s8(Lg02-Lg07);
t0 BY m_fk*(Lt01)
m_sk-m_s8(Lt02-Lt07);
g3 BY m_fk*(Lg31)
m_sk-m_s8(Lg32-Lg37);

!Means
[m_fk-m_s8@0]; [g0*147](mu_g0); [t0@0]; [g3*22](mu_g3);

!Variances and covariances
m_fk-m_s8; g0*495 t0*.24 g3; g0 WITH t0 g3; t0 WITH g3;

!Regressions
!g0 t0 g3 ON gender; !uncomment line for conditional model

MODEL CONSTRAINT:
NEW(mu_t0*.7); !Introduce mean of surge point
!Asymptote loadings
Lg01 = \exp(-1*\exp(((\mu_g3*\exp(1)*(\mu_t0-0.0))/\mu_g0)))
+((\mu_g3*\exp(1)*(\mu_t0-0.0)*\exp(\mu_g3*\exp(1)*(\mu_t0-0.0)/\mu_g0)
\exp(-1\exp(\mu_g3*\exp(1)*(\mu_t0-0.0)/\mu_g0)))/\mu_g0);
Lg02 = \exp(-1*\exp(((\mu_g3*\exp(1)*(\mu_t0-0.5))/\mu_g0)))
+((\mu_g3*\exp(1)*(\mu_t0-0.5)*\exp(\mu_g3*\exp(1)*(\mu_t0-0.5)/\mu_g0)
\exp(-1\exp(\mu_g3*\exp(1)*(\mu_t0-0.5)/\mu_g0)))/\mu_g0);
Lg03 = \exp(-1*\exp(((\mu_g3*\exp(1)*(\mu_t0-1.0))/\mu_g0)))
+((\mu_g3*\exp(1)*(\mu_t0-1.0)*\exp(\mu_g3*\exp(1)*(\mu_t0-1.0)/\mu_g0)
\exp(-1\exp(\mu_g3*\exp(1)*(\mu_t0-1.0)/\mu_g0)))/\mu_g0);
Lg04 = \exp(-1*\exp(((\mu_g3*\exp(1)*(\mu_t0-1.5))/\mu_g0)))
+((\mu_g3*\exp(1)*(\mu_t0-1.5)*\exp(\mu_g3*\exp(1)*(\mu_t0-1.5)/\mu_g0)
\exp(-1\exp(\mu_g3*\exp(1)*(\mu_t0-1.5)/\mu_g0)))/\mu_g0);
Lg05 = \exp(-1*\exp(((\mu_g3*\exp(1)*(\mu_t0-3.5))/\mu_g0)))
+((\mu_g3*\exp(1)*(\mu_t0-3.5)*\exp(\mu_g3*\exp(1)*(\mu_t0-3.5)/\mu_g0)
\exp(-1\exp(\mu_g3*\exp(1)*(\mu_t0-3.5)/\mu_g0)))/\mu_g0);
Lg06 = \exp(-1*\exp(((\mu_g3*\exp(1)*(\mu_t0-5.5))/\mu_g0)))
+((\mu_g3*\exp(1)*(\mu_t0-5.5)*\exp(\mu_g3*\exp(1)*(\mu_t0-5.5)/\mu_g0)
\exp(-1\exp(\mu_g3*\exp(1)*(\mu_t0-5.5)/\mu_g0)))/\mu_g0);
Lg07 = \exp(-1*\exp(((\mu_g3*\exp(1)*(\mu_t0-8.5))/\mu_g0)))
+((\mu_g3*\exp(1)*(\mu_t0-8.5)*\exp(\mu_g3*\exp(1)*(\mu_t0-8.5)/\mu_g0)
\exp(-1\exp(\mu_g3*\exp(1)*(\mu_t0-8.5)/\mu_g0)))/\mu_g0);

!Surge point loadings
Lt01 = -1*\mu_g3*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-0.0)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-0.0)/\mu_g0));
Lt02 = -1*\mu_g3*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-0.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-0.5)/\mu_g0));
Lt03 = -1*\mu_g3*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-1.0)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-1.0)/\mu_g0));
Lt04 = -1*\mu_g3*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-1.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-1.5)/\mu_g0));
Lt05 = -1*\mu_g3*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-3.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-3.5)/\mu_g0));
Lt06 = -1*\mu_g3*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-5.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-5.5)/\mu_g0));
Lt07 = -1*\mu_g3*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-8.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-8.5)/\mu_g0));

!Surge slope loadings
Lg31 = -1*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-0.0)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-0.0)/\mu_g0));
Lg32 = -1*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-0.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-0.5)/\mu_g0));
Lg33 = -1*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-1.0)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-1.0)/\mu_g0));
Lg34 = -1*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-1.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-1.5)/\mu_g0));
Lg35 = -1*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-3.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-3.5)/\mu_g0));
Lg36 = -1*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-5.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-5.5)/\mu_g0));
Lg37 = -1*\exp(1)*\exp(\mu_g3*\exp(1)*(\mu_t0-8.5)/\mu_g0)
+\exp(-1*\exp(\mu_g3*\exp(1)*(\mu_t0-8.5)/\mu_g0));
The Jenss-Bayley model reparameterized to estimate the effect of cumulative breastfeeding on infant weight at any desired age

We did not have permission to post the Cebu infant data, but we provide Mplus code below to show how to estimate the model.

```
TITLE: cebu growth data (jenss-bayley) with mobile intercept;
DATA: FILE IS cebu_wide_more.dat;
VARIABLE: NAMES ARE id momht rural male age0-age12 br0-br12 h0-h12 w0-w12 b0 b2 b4 b6 b8 b10 b12 b14 b16 b18 b20 b22 b24 x6 x8 x10 x12 x14 x16 x18 x20 x22 x24;
USEVARIABLES ARE cbf !comment out 'cbf' for unconditional model
x0-x12; !b0-b24 cumulative BF means from age 0m; xb6-xb24 from age 6m
MISSING ARE ALL (-999);
USEOBSERVATIONS ARE id NE 1600044; !omit outlier
DEFINE: !below, choose to model height or weight
  x0=h0;x1=h2;x3=h3;x4=h4;x5=h5;x6=h6;x7=h7;x8=h8;x9=h9;x10=h10;x11=h11;x12=h12;
x0=w0;x1=w1;x2=w2;x3=w3;x4=w4;x5=w5;x6=w6;x7=w7;x8=w8;x9=w9;x10=w10;x11=w11;x12=w12;
!comment out next line for unconditional model
cbf=b12; ! <- SET AGE FOR CUMULATIVE BREASTFEEDING (mos.);
ANALYSIS: ESTIMATOR IS ML; ITERATIONS ARE 10000; !BOOTSTRAP IS 300;
MODEL: [x0-x12@0]; x0-x12*.1(v1); x0-x11 PWITH x1-x12*.027(v2);
  fa*1.2; fb*.005; fc*.288; fd*.02; fa WITH fb fc fd; fb WITH fc fd; fc WITH fd;
  [fa*9](mfa); [fb*.13](mfb); [fc*1.2](mfc); [fd@0]; ! fa, fb, and fc are linear
  fa BY x0-x12@1;
  fb BY x0*(b0); fb BY x1-x12(b1-b12);
  fc BY x0*(c0); fc BY x1-x12(c1-c12);
  fd BY x0*(d0); fd BY x1-x12(d1-d12);
!comment out next line for unconditional model
  fa ON cbf*-.53; fb ON cbf*.05; fc ON cbf*-.55; fd ON cbf*-.23;
!jenss-bayley with a mobile intercept
MODEL CONSTRAINT: NEW(mfd*-.334 t0); t0=12; ! <- SET INTERCEPT LOCATION (mos.)
```

```
b0=0-t0; c0=exp(mfc+mfd*t0)-exp(mfc+mfd*0);
b1=2-t0; c1=exp(mfc+mfd*t0)-exp(mfc+mfd*2);
b2=4-t0; c2=exp(mfc+mfd*t0)-exp(mfc+mfd*4);
b3=6-t0; c3=exp(mfc+mfd*t0)-exp(mfc+mfd*6);
b4=8-t0; c4=exp(mfc+mfd*t0)-exp(mfc+mfd*8);
b5=10-t0; c5=exp(mfc+mfd*t0)-exp(mfc+mfd*10);
b6=12-t0; c6=exp(mfc+mfd*t0)-exp(mfc+mfd*12);
b7=14-t0; c7=exp(mfc+mfd*t0)-exp(mfc+mfd*14);
b8=16-t0; c8=exp(mfc+mfd*t0)-exp(mfc+mfd*16);
b9=18-t0; c9=exp(mfc+mfd*t0)-exp(mfc+mfd*18);
b10=20-t0; c10=exp(mfc+mfd*t0)-exp(mfc+mfd*20);
b11=22-t0; c11=exp(mfc+mfd*t0)-exp(mfc+mfd*22);
b12=24-t0; c12=exp(mfc+mfd*t0)-exp(mfc+mfd*24);
d0=t0*exp(mfc+mfd*t0)-0*exp(mfc+mfd*0);
d1=t0*exp(mfc+mfd*t0)-2*exp(mfc+mfd*2);
d2=t0*exp(mfc+mfd*t0)-4*exp(mfc+mfd*4);
d3=t0*exp(mfc+mfd*t0)-6*exp(mfc+mfd*6);
d4=t0*exp(mfc+mfd*t0)-8*exp(mfc+mfd*8);
d5=t0*exp(mfc+mfd*t0)-10*exp(mfc+mfd*10);
d6=t0*exp(mfc+mfd*t0)-12*exp(mfc+mfd*12);
d7=t0*exp(mfc+mfd*t0)-14*exp(mfc+mfd*14);
```
d8=t0*exp(mfc+mfd*t0)-16*exp(mfc+mfd*16);
d9=t0*exp(mfc+mfd*t0)-18*exp(mfc+mfd*18);
d10=t0*exp(mfc+mfd*t0)-20*exp(mfc+mfd*20);
d11=t0*exp(mfc+mfd*t0)-22*exp(mfc+mfd*22);
d12=t0*exp(mfc+mfd*t0)-24*exp(mfc+mfd*24);

OUTPUT: TECH1 TECH3 STDYX; !CINTERVAL(BCBOOTSTRAP);